Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

1,3-Dichloro-1,1-dimethyl-3,3-diisopropyldistannoxane¹

Yan Lu,* Xuebing Leng, Honggen Wang, Qinglan Xie and Jing Li

National Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China Correspondence e-mail: lyane@public.tpt.tj.cn

Received 10 July 2001 Accepted 24 September 2001

The title compound, $[Sn_4(CH_3)_4(C_3H_7)_4Cl_4O_2]$ or $\{Cl[(CH_3)_2-CH]_2SnOSn(CH_3)_2Cl\}_2$, obtained by the reaction of $[(CH_3)_2-CH]_2SnO$ and $(CH_3)_2SnCl_2$, exists as centrosymmetric dimers in the solid state. It contains a central planar four-membered Sn_2O_2 ring. The coordinate geometry about the Sn atoms is distorted trigonal pyramidal.

Comment

1,3-Disubstituted-1,1,3,3-tetraorganodistannoxanes are useful catalysts for many reactions (Otera, 1994). A characteristic feature of symmetric tetraorganodistannoxanes is their dimerization, which results in a ladder-type arrangement containing a central planar four-membered Sn_2O_2 ring. Compared with symmetric tetraorganodistannoxanes, the structures of asymmetric tetraorganodistannoxanes have not been fully investigated. From the reported data for asymmetric tetraorganodistannoxanes with mixed *R* groups, it can be seen that larger groups promote linkage with exocyclic Sn atoms because of their hindering effect (Dakternieks *et al.*, 1997; Lu *et al.*, 2000). But the title compound, 1,3-disubstituted-1,1,3,3-tetraorganodistannoxane, (I), is an exception.

The title compound (Fig. 1) exists as ladder-type dimers that are analogous to the traditional structure of symmetric

distannoxanes, but the larger bulky isopropyl (ⁱPr) groups unusually link to exo-Sn atoms, while the smaller Me groups connect to endo-Sn atoms. In the asymmetric unit, both Me₂SnCl and Sn(i Pr)₂ groups are connected by a Cl and an O atom to form the Me₂Sn(Cl)(μ_2 -Cl)(μ -O)Sn(^{*i*}Pr)₂ fragment. The bridging oxo atom functions as a triple-bond bridge and the internal angles [105.55 (14) and 74.45 (14) $^{\circ}$; Table 1] of the central Sn₂O₂ are compared with those in other distannoxane systems, such as $104.6 (2)^{\circ}$ in $[Cl(^{t}Bu)_{2}SnOSnMe_{2}Cl]_{2}$, 104.8 (2)° in $[Cl(^tBu)_2SnOSnPh_2Cl]_2$ (Dakternieks *et al.*, 1997) and $105.69 (17)^{\circ}$ in $[Cl(^{t}Bu)_{2}SnOSnPh_{2}Cl]_{2}$ (Lu *et al.*, 2000). The three μ_3 -O-Sn bond distances are very similar [Sn2-O1 2.053 (3) Å, Sn1–O1 2.015 (3) Å and Sn2ⁱ–O1 2.143 (3) Å; symmetry code: (i) -x, 2 - y, 2 - z], reflecting the strong bridging oxo coordination with Sn atoms in the dimer. All four Sn atoms, the four Cl atoms and two O atoms comprise a fused ring system that is coplanar, with a mean deviation of ±0.0054 (6) Å.

The geometry about all the Sn atoms can be described as distorted trigonal bipyramidal. With regard to Sn1, one μ_3 -O and two methyl C atoms are in equatorial positions. The axial Cl-Sn-Cl angle of 163.48 (5) Å deviates from the ideal value of 180°. This deviation may be due to the interaction of the Cl atoms with the endocyclic Sn atoms. For Sn2, the axial O-Sn-Cl angle is $150.80 (9)^{\circ}$. Both kinds of Sn atoms are pentacoordinated. Atom Cl2 has a close intermolecular contact with Sn2, which may be viewed as a weak bonding interaction; the Sn $\cdot \cdot \cdot$ Cl2 distance is 3.3613 (19) Å, compared with the van der Waals radii sum of 4.0 Å. This is different from the case in asymmetric tetraorganodistannoxanes $[Cl(^{t}Bu)_{2}SnOSnR_{2}Cl]_{2}$ (R = Me, Bu), in which both Cl atoms interact with the endocyclic Sn atom, making the endo-Sn atom six-coordinate, while the exo-Sn atom is still five-coordinate [the endo-Sn-Cl and exo-Sn-Cl bond lengths are 2.802 (2) and 2.675 (2) Å for R = Me, and 2.907 (2) and 2.598 (2) Å, respectively, for $R = {^n}Bu$]. The reason for this may be attributable to the fact that the Sn2 atom is connected to

Figure 1

A view of (I) showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

¹ Systematic name: di- μ -chloro-1:2 $\kappa^2 Cl$;3:4 $\kappa^2 Cl$ -dichloro-1 κCl ,4 κCl -tetraisopropyl-2 $\kappa^2 C$,3 $\kappa^2 C$ -tetramethyl-1 $\kappa^2 C$,4 $\kappa^2 C$ -di- μ_3 -oxo-1:2:3 $\kappa^3 O$;2:3:4 $\kappa^3 O$ -tetratin(IV).

the larger *exo*-butyl groups while the *endo*-Sn atom is connected to the smaller groups in the dimer.

Experimental

The synthesis of the title compound was carried out by reaction of equimolar amounts of $[(CH_3)_2CH]_2SnO$ and $(CH_3)_2SnCl_2$ by refluxing an acetone solution for 1 h until the solution became clear. Recrystallization from acetone yielded colourless crystals of (I) suitable for X-ray analysis (yield 67%). Analysis calculated for $C_{16}H_{40}Cl_4O_2Sn_4$: C 21.81, H 4.58%; found: C 21.73, H 4.62%; FT–IR data (KBr pellet, cm⁻¹): 2965 (*s*), 2859 (*m*), 1382 (*m*), 1355 (*s*), 1197 (*m*), 1153 (*s*), 797 (*s*), 607 (*s*), 546 (*s*).

 $D_x = 1.989 \text{ Mg m}^{-3}$

Cell parameters from 52

Mo $K\alpha$ radiation

reflections

 $\mu = 3.73 \text{ mm}^{-1}$

T = 293 (2) K

Rhombic, colorless $0.20 \times 0.10 \times 0.10$ mm

 $\theta=2.8{-}25.3^\circ$

Crystal data

 $\begin{bmatrix} Sn_4(CH_3)_4(C_3H_7)_4Cl_4O_2 \end{bmatrix} \\ M_r = 881.04 \\ Monoclinic, P_2 / n \\ a = 10.268 (4) Å \\ b = 9.529 (3) Å \\ c = 15.315 (5) Å \\ \beta = 101.023 (6)^{\circ} \\ V = 1470.8 (9) Å^3 \\ Z = 2 \\ \end{bmatrix}$

Data collection

Bruker CCD area-detector	1825 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.038$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 11$
(SADABS; Sheldrick, 1997)	$k = -9 \rightarrow 11$
$T_{\min} = 0.646, T_{\max} = 0.689$	$l = -18 \rightarrow 12$
5966 measured reflections	Intensity decay: none
2591 independent reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.068$ S = 0.922591 reflections 118 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0306P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.43 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.51 \text{ e } \text{Å}^{-3}$

All H atoms were located geometrically (C-H = 0.96 Å) and neither their positional nor displacement parameters were refined.

Table 1

Selected geometric parameters (Å, $^{\circ}$).

Sn1-O1	2.015 (3)	Sn2-O1	2.053 (3)
Sn1-Cl2	2.474 (2)	Sn2-O1 ⁱ	2.143 (3)
Sn1-Cl1	2.757 (2)	Sn2-Cl1	2.724 (2)
O1-Sn1-Cl2	87.31 (10)	O1-Sn2-Cl1	76.43 (10)
C2-Sn1-Cl2	95.87 (17)	O1 ⁱ -Sn2-Cl1	150.81 (9)
C1-Sn1-Cl2	95.63 (17)	Sn2-Cl1-Sn1	82.34 (4)
O1-Sn1-Cl1	76.21 (10)	Sn1-O1-Sn2	125.01 (17)
Cl2-Sn1-Cl1	163.48 (5)	Sn1-O1-Sn2 ⁱ	129.36 (16)
O1-Sn2-O1 ⁱ	74.45 (14)	$Sn2-O1-Sn2^{i}$	105.55 (14)

Symmetry code: (i) -x, 2 - y, 2 - z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (No. 29972025).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: VJ1147). Services for accessing these data are described at the back of the journal.

References

- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SMART1000 Operation Manual. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dakternieks, D., Jurkschat, K., Dreumel, S. & Tiekink, E. R. T. (1997). Inorg. Chem. 36, 2023–2029.
- Lu, Y., Weng, L. H., Lan, Z. L. & Xie, Q. L. (2000). The 19th IUPAC International Conference on Organometallic Chemistry, Shanghai, PS133.
- Otera, J. (1994). Advances in Detailed Reaction Mechanism, edited by J. M. Coxon, Vol. 3, pp. 167–193. Greenwich: JAI Press Inc.
- Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.